Curiosidades sobre los astros, propuestas de observaciones sencillas, aspectos cotidianos pero poco conocidos, todo ello con un enfoque didáctico.

martes, 1 de febrero de 2022

Estrellas polares

A pesar de que no destaca excesivamente por su brillo, hay una estrella en los cielos del hemisferio norte muy especial, que incluso da título o es citada en algunas canciones. Por ejemplo, puedes oírla en este enlace , bajar un poco el volumen (y volver a esta ventana) mientras sigues leyendo.

Porque sin duda es la más conocida por su nombre, aunque pocos saben localizarla y a veces se dice que es la más brillante del cielo, lo cual no es en absoluto cierto. Como es la más famosa, algunos suponen que es especial por su brillo y es verdad que destaca por ello en su entorno, pero en todo el cielo hay más de 40 estrellas más brillantes que ella. 

Pero sí es especial porque siempre permanece prácticamente en el mismo lugar del cielo, mientras las demás las vemos girar a su alrededor debido a la rotación terrestre: un movimiento lento, pero evidente si tomamos referencias y volvemos a observar al cabo de unas horas

Con el paso de las horas, y a causa de la rotación de la Tierra, todas las estrellas dibujan arcos cuyo centro está junto a la Polar, que prácticamente queda señalada por un leve trazo, casi un punto. Imagen tomada de https://misistemasolar.com/constelaciones-circumpolares/

Es la brújula que nos marca casi exactamente el norte: Conocida como la estrella polar, o Polaris su nombre propio latino, y también alfa de la Osa Menor, o alfa UMi según la nomenclatura técnica astronómica.

Además de tener esas características únicas, no es difícil encontrarla a partir de una de las constelaciones más conocidas: La Osa Mayor que está situada en la misma zona del cielo.

Aunque pertenece a la constelación de la Osa Menor puede encontrarse más fácilmente siguiendo la línea que marcan alfa y beta de la Osa Mayor, unas 5 veces esa distancia.

El motivo de que Polaris prácticamente permanezca inmóvil es que si prolongamos el eje de rotación de la Tierra, pasaría por allí. Bueno, a menos de un grado de distancia (incluso actualmente a menos de 40 minutos)



La estrella polar es, sin duda, el mejor método para orientarse tanto en tierra como en el mar en una noche despejada. Como se ha dicho, su posición indica casi exactamente el Norte, y lo hace incluso mejor que una brújula magnética porque ésta necesita una corrección: la declinación magnética que varía con el tiempo y es diferente en cada lugar.

La brújula indica el Norte magnético que es diferente del Norte geográfico. Por ejemplo en 1982, en la costa nordeste de USA, la diferencia era de 30º e incluso más en Canadá, pero varía con el tiempo.

Polo celeste

Antes de seguir conviene definir lo que se entiende por “polo celeste”. La Tierra (al igual  que los demás planetas) gira debido a la rotación y este giro lo realiza alrededor de un eje imaginario. La intersección de la prolongación de este eje con la bóveda celeste será el polo celeste. 

Lógicamente, como se puede prolongar en los dos sentidos, en cualquier planeta habrá dos polos celestes: En principio se toma Norte o Sur, según cual de ellos esté más cerca del correspondiente de la Tierra, pero para evitar algunos inconvenientes se pueden tomar positivo o negativo:  Se considera polo positivo el del sentido del retroceso de un tornillo que girase como el planeta, y polo negativo el contrario, el del avance de un tornillo con ese mismo giro; y este signo se utiliza en las coordenadas.

Aunque la Tierra también se mueve alrededor del Sol en la traslación, y el eje se desplazaría de manera paralela, el polo celeste no cambia porque las estrellas (que nos dan la referencia) están enormemente lejanas.

Si nos colocamos en el polo norte terrestre la estrella polar norte estará sobre nuestra cabeza.

Lo cierto es que es una casualidad que actualmente la dirección Norte del eje de la Tierra apunte casi exactamente a una estrella relativamente brillante. Como vamos a ver, si lo prolongamos en dirección Sur no encontraremos ninguna estrella destacable cercana al polo sur celeste y tampoco ninguno de los otros planetas del Sistema Solar tiene actualmente una estrella tan brillante cerca de ninguno de sus dos polos, aunque Urano tiene, algo más débiles, en ambos.

La posición de los polos celestes de cada planeta es diferente, entre otras cosas porque la inclinación de los ejes de cada uno es distinta, como se aprecia en este ilustrativo y difundido gráfico:

Que es incluso mucho más vistoso en el vídeo realizado por James O´Donoghue

Aunque como luego se verá, hay otros factores que determinan la posición de los polos entre las constelaciones y por ejemplo, aunque la inclinación de los ejes de Marte y de la Tierra son similares (25º y 23.5º) podría pensarse que sus respectivos polos están cercanos, pero en realidad no es así y están separados nada menos que 37º. En la representación anterior los ángulos de los ejes se han tomado todos en el plano perpendicular a la visual para verlos individualmente en su justa medida, pero cada planeta lo tiene en diferente dirección, y la referencia sobre la que se toman los ángulos no es la misma.



Polos de cada planeta del Sistema Solar

Estas son las posiciones de los polos norte celestes:


Aunque toda la información está en el gráfico, si quieres entrar en detalles, se puede constatar que:

- El tercer planeta es prácticamente el único que tiene una estrella cerca de su polo norte celeste. También Urano, pero mucho más débil.

- En Mercurio el polo norte estaría cerca de la estrella ómicron Dra, concretamente a poco más de 2º y con magnitud 4.6. Quizás sea el caso más desfavorable, pues no tiene ninguna estrella de magnitud menor que 4 a una distancia inferior a 7º.

- En Venus está casi equidistante (a unos 6 º) con 3 estrellas de magnitud similar (poco más de mag. 3): zeta del dragón, chi y delta de la misma constelación, esta última con magnitud 3.05 es la más brillante de las tres. Algo más cerca está 42 del dragón, pero con solo 4.8 de magnitud es demasiado débil.

- Lo mismo ocurre con Marte, que aunque tiene estrellas de magnitud 4 más cercanas (la más próxima pi1 Cyg), en el entorno de su polo destaca sobremanera Deneb (alfa Cyg)  aunque esté a 9º

- El polo celeste de Júpiter está muy cercano al de Venus pero en este caso, de las estrellas mencionadas antes habría que elegir zeta del dragón de magnitud 3.15, aunque esté más lejos (a casi 5º) que 36 del dragón (4.95)      

- La estrella polar de Saturno, casi se podría considerar también Polaris, a pesar de que no está demasiado cerca (a 6º), y a solo 4º está la débil 2 UMi de magnitud 4.2

- Urano tiene una estrellita (15 Ori) casi justo en su polo, a solo medio grado, por lo que es la estrella polar más cercana de todas, aunque solo un poco más que Polaris, pero su débil magnitud de 4.8 haría que para orientarse fuera más fácil elegir la mucho más brillante Aldebarán aunque esté a 8 grados.

- En Neptuno delta Cyg de magnitud 2.9, aunque separada casi 3º


Lógicamente las posiciones de los polos sur son simétricas pero en constelaciones opuestas, y estas son las correspondientes al hemisferio sur:

- En el cielo de nuestro planeta no hay estrella polar Sur. Ese polo celeste está precisamente en una zona sin estrellas ni siquiera medianamente brillantes. Si hay que elegir una, la más cercana, aunque muy débil, sería sigma Oct con un escasísimo brillo de 5.45 a más de un grado del polo.

- Mercurio tiene una estrella junto a su polo Sur a solo 0.5º, y algo más brillante que las anteriores, aunque no mucho, se trata de alfa Pic con magnitud 3.2. Pero si hay que hablar de una estrella que hipotéticamente ayudase a buscar el Sur, casi sería más adecuado utilizar la brillantísima Canopus aunque esté a casi 10º del polo.

- Probablemente lo mismo se pueda decir de Venus y Júpiter, que aunque Canopus se aparta de sus polos aún más (hasta 15º con el polo de Venus), estos dos planetas no tienen ninguna estrella muy cercana al polo, ni tampoco de magnitud menor que 3.5 más cercana que Canopus. Recordemos que en el caso de Venus sería el polo positivo.

- A casi 3º del polo sur de Marte está kappa Vel de magnitud 2.45, aunque un poco más lejos tiene también otras dos estrellas algo más brillantes.

- Saturno que tiene su polo situado no muy lejos que el de la Tierra, tiene unas condiciones mejores: casi coincide con delta Oct, aunque con una magnitud de 4.3 tampoco es mucho más brillante que la de la Tierra, pero algo sí.

- La estrella eta Ori (Sabik), está a la misma distancia del polo sur de Urano, que Polaris de nuestro polo y es solo un poco más débil.

Teniendo en cuenta que Urano tiene también una estrellita en su otro polo, resulta que es el planeta que tiene las dos estrellas polares más cercanas a sus respectivos polos. Quien lo iba a decir, con lo descolocado que tiene su eje.

- Respecto a Neptuno, casi a la misma distancia de su polo sur (a unos 3º) hay 3 estrellitas de magnitud menor que 4. La más cercana es a Pupis (mag 3.7) y la más brillante gamma vel (1.75)




Factores de los que depende la situación del polo celeste

Tal como se ha dicho antes, en principio podría pensarse que las posiciones de los polos celestes de cada planeta dependen solo de la inclinación del eje de rotación, pero no es así y en su situación intervienen, además de esa inclinación, varios parámetros:

- La dirección hacia la cual se inclina el eje, respecto a su plano orbital

No es suficiente con saber que el eje está inclinado, por ejemplo el de la Tierra 23.5º, ya que puede apuntar hacia cualquier punto de un círculo en la esfera celeste. Esta dirección es lo que cambia con el movimiento de precesión.

- La inclinación del plano orbital respecto al plano de la eclíptica

Se toma como referencia el plano de la eclíptica, como se podría haber tomado otro, por ejemplo el plano ecuatorial del Sol o el plano orbital de Júpiter que es el planeta mayor del Sistema. 

- La orientación del plano orbital que viene determinado por el ángulo entre la dirección del punto vernal y el nodo ascendente (la longitud del nodo ascendente)

Como referencia para comenzar a medir los ángulos del nodo se toma el punto vernal, un punto que está en la eclíptica y se utiliza como origen de las coordenadas de ascensión recta y otras cuestiones.

Considerando también los valores mencionados de inclinación del eje y la dirección hacia la que está inclinado, finalmente, todo se podría representar de la siguiente manera y podría calcularse en cada caso la posición de los polos celestes:


La separación entre el polo del planeta y el de la eclíptica siempre será menor o igual a la suma de la inclinación del plano orbital y la inclinación del eje.

 Los dos ejemplos más sencillos, donde el proceso se simplifica por tener un parámetro 0º, serían en Mercurio y en la Tierra:

En la Tierra, como su plano orbital es la propia eclíptica, el polo celeste está a 23.5º del polo eclíptico, ya que ese valor es la inclinación del eje. 

Por otra parte, el plano que pasa por el eje de rotación y es perpendicular a la eclíptica, forma un ángulo de 90º con la línea que pasa por el polo eclíptico y el punto vernal.


En Mercurio la inclinación del eje es cero, pero su polo está a 7º del polo de la eclíptica porque la inclinación de su plano orbital respecto a la eclíptica es de esos 7º.

Por otra parte como la longitud del nodo ascendente es de 48º, la dirección del polo celeste se sitúa a 42º de la línea que pasa por el polo eclíptico y el punto vernal.

Así los polos celestes de la Tierra y Mercurio quedan situados en los lugares que se situaron antes, teniendo en cuenta que en la representación celeste (de abajo hacia arriba) los ángulos cambian de sentido:

Polaris perderá su privilegio 

Se dice que nada es eterno, y todos los datos concretos que se han dado y que son válidos actualmente cambiarán con el paso de los milenios. 

Al menos en el tercer planeta hay dos motivos que harán cambiar la dirección hacia la que está dirigido su eje. El primero la precesión de los equinoccios tal como se recogió hace ya tiempo en este blog y también su propia inclinación, que actualmente está disminuyendo y llegará a ser de solo 21.5º, siendo las duraciones respectivas de estos ciclos de 26000 y 40000 años aproximadamente.

Todo ello hace que el polo celeste vaya trazando una especie de bucle entre las constelaciones, como puede verse en el gráfico; la estrella polar dejará de serlo, y otras estrellas ocuparán su lugar.  

Evolución de la la posición del polo norte celeste en pasados y próximos milenios

Hacia el 27500 Polaris volverá a estar muy cerca del polo celeste, pero ligeramente menos que ahora. Precisamente en la actualidad se está acercando cada vez más, y el año que más próxima estará será (pura casualidad) el último de este siglo. En 2100 estará a menos de 27.5´de distancia. Pero luego se volverá a alejar.

Se puede ver que entre todas las estrellas representadas (aprox. las de magnitud menor que 4) precisamente Polaris, la que nos ha tocado vivir a nosotros es la que más se acerca al polo, aunque esto tampoco es eterno y adentrándonos mucho en el futuro el movimiento propio de las estrellas deformará las constelaciones y pudiera ocurrir que alguna más brillante se cruce con la prolongación del eje terrestre.  

Entre los años 13000 y 14000 la estrella polar será Vega, aunque su separación con el polo será mucho mayor que la de Polaris ahora, rondando los 6º. En esa época tendrán una estrella polar muy llamativa y entonces sí podrán decir que es la más brillante.


miércoles, 19 de enero de 2022

Los colores del cielo

Muchas veces habrás oído esta pregunta ¿Por qué el cielo es azul? Quizás te haya parecido una tontería, porque cada cosa tiene su color: la nieve es blanca las plantas verdes, el carbón negro y el cielo azul. Pero también es posible que te hayas preguntado si desde otros astros se ve el cielo del mismo color.


El color con el que desde el tercer planeta vemos el cielo y con el que pudiera verse desde otro astro depende de la interacción de la luz que llega del Sol con las moléculas de la atmósfera o las partículas que pudiera haber en suspensión.

Aunque parezca una perogrullada y, a falta de una explicación más detallada que llegará luego, hay una cosa clara: De noche como no llega la luz del Sol el cielo es negro (ausencia de color), y por ejemplo en la Luna donde no hay atmósfera ni partículas de polvo en suspensión, también es negro y tanto de noche como de día se ven las estrellas con ese fondo negro. Por supuesto en pleno día la luz del Sol deslumbrará y sería observable menos cantidad de estrellas.

En las fotos realizadas por las misiones Apolo no salen estrellas (y ese es el argumento de algunos negacionistas de los viajes a la Luna) porque si se diera la exposición necesaria para ello, se quemaría el primer plano, que se vería blanco sin detalles, y aparecerían movidos los astronautas, como en la imagen de la derecha. Por cierto, la bandera no aparecería movida, ya que tras unos segundos de vibración inicial al clavarla en el suelo quedó luego inmóvil.

La foto tal como se realizó, y como seguramente habría quedado con una mayor exposición para que apareciesen estrellas. Es curioso señalar que el ojo humano distinguiría ambas cosas porque tiene un mayor rango de tolerancia que la fotografía, adaptándose a la cantidad de luz de cada zona.

Esto nos puede llevar a preguntarnos de qué color es el cielo de otros planetas:

- Desde Mercurio, al igual que desde la Luna, el cielo siempre es negro porque allí tampoco hay una atmósfera apreciable. 

Aún siendo de día, tal como reflejan las sombras, desde el primer planeta el cielo se vería negro, lleno de estrellas, como en esta imagen donde destacan Venus y la Tierra. Pintura de Ron Miller.

Voy a utilizar algunas otras imágenes de este ilustrador, que fue director artístico del planetario del museo de la NASA  y que siempre tiene en cuenta las circunstancias científicas en sus muchas obras sobre paisajes espaciales. Incluso antes de que se tuvieran imágenes reales, sus conocimientos tanto astronómicos como artísticos mostraron unos resultados que guardaban un asombroso parecido con lo que acabó siendo realidad.

El Sol desde Mercurio lógicamente se vería más grande y luminoso que desde la Tierra

En esta otra pintura de Ron Miller que representa también un paisaje del primer planeta, aparece incluso el Sol, rodeado de estrellas, y el cielo permanece negro.

En Venus no se puede hablar del color del cielo porque no se ve, ya que siempre está nublado. Tendríamos que decir que el cielo está cubierto por nubarrones que en general tienen un tono amarillento.

Es curioso que circulan algunas imágenes recogiendo una zona de cielo como la siguiente, pero no son reales. Esta ha sido realizada combinando varias fotos, obtenidas por la nave Venera 14 en 1982 pero en las que solamente aparecía suelo.

El cielo de la imagen es un añadido artificial posterior a la llegada de la foto, por lo que no aporta datos en este sentido

Algo parecido ocurrió con ésta otra, en la que según el criterio con que se trate la imagen puede obtenerse distinto resultado en el aspecto del cielo:

Un cielo amarillo uniforme, o con un tono ocre y nubes

Por ello, nuevamente bajo los pinceles de Ron Miller es probable que este cielo se ajuste mejor a la realidad. Apenas se intuye la posición del Sol como una zona más clara entre las nubes, de las que surgen frecuentes rayos:


-  De Marte sí tenemos muchas imágenes reales de su cielo, que presenta un color ocre de día y en los atardeceres marrón violeta, aunque también aquí los tonos podrían variar según el tratamiento que se dé a la imagen original.

Marte en pleno día


El Sol a punto de ponerse en esta zona del cuarto planeta, donde el cielo presenta tonalidad azulada o violeta.

En el resto de los planetas del Sistema Solar, con su densa atmósfera, depende de cuánto nos sumerjamos en ella. Haciéndolo a suficiente profundidad, esa atmósfera impedirá ver la luz del Sol y por supuesto la de las estrellas, pero si solo penetramos ligeramente hacia el interior, dependiendo del planeta veríamos sus nubes y en el caso de Urano y Neptuno se vería con tonalidades azules como el nuestro.

Espectacular imagen de las nubes de Júpiter tomada por la sonda Juno. Así se ve desde el exterior, pero es de suponer que desde el interior, a una distancia adecuada, la imagen sería similar. NASA -JPL-CALTECH-SWRI-MSSS-Gerald Eichstadt-Sean Doran

Ron Miller imaginó este paisaje mirando hacia el cielo desde el interior de la atmósfera de Júpiter:
Casi pudiera parecer más realista esta imagen que la anterior, aunque el dibujo no sea aquella sino ésta

También el artista estadounidense representó esta
 vista desde una zona no muy interior de la atmósfera de Neptuno, desde donde se ve su cielo.


Aunque ya no sea planeta, se puede decir que también desde Plutón se verían ligeras tonalidades azules en su cielo, al menos durante las épocas en que más se aproxima al Sol (situándose cerca o  por el interior de la órbita de Neptuno) y se forma una ligera atmósfera sublimando sus hielos, como sugiere la siguiente imagen captada por la sonda New Horizons.

Neblina en Plutón en una imagen tomada en julio de 2015. ‎Créditos NASA/JHUAPL/SwRI

Desde cualquier satélite o asteroide el cielo también sería negro, excepto en el caso de Titán, el mayor satélite de Saturno, el único astro de su clase que tiene atmósfera. Desde la superficie de Titán no podríamos ver astros en el cielo porque solo la luz infrarroja puede atravesar su densa atmósfera, y ésta se vería de un tono anaranjado.

Dibujo de Saturno desde Titán.

Las típicas representaciones como esta, en que aparece Saturno en el cielo de Titán, no se corresponden a la visión desde su superficie, sino que habría que ascender hasta que la menor densidad de la capa de atmósfera fuese transparente a la luz visible.

Desde el núcleo de un cometa durante la mayor parte del tiempo también el cielo sería negro, pero luego al irse acercando al Sol y sublimarse el hielo se formaría una especie de niebla grisácea que impediría en gran medida ver las estrellas, aunque antes de que fuera envuelto por la coma podrían elegirse zonas con mejor visibilidad.

El núcleo del cometa Churyumov-Gerasimenko cuando empiezan a brotar chorros de gas y polvo que obstaculizarían la visión del cielo. 


Seguramente lo que aquí he recogido sea solo una simplificación de las muchas variaciones que podría haber. Porque por ejemplo en el tercer planeta, aunque decimos que el cielo es azul durante el día y negro por la noche, lo cierto es que la realidad no es tan rotunda y las variaciones pueden ser muy diversas. 

Por ejemplo todo el mundo sabe que puede ser rojizo en los atardeceres. Habitualmente se ven de ese tono las nubes que haya en la dirección del Sol en momentos cercanos a su salida o puesta aunque el cielo de zonas despejadas próximas siga viéndose azul.


Pero en ocasiones el mismo cielo por esa zona se tiñe de esos colores, con tonalidades distintas en cada caso, dependiendo de la humedad, calima o limpieza del cielo.

En este caso, a la puesta de Sol toda la zona quedó con una coloración roja intensa

Por supuesto que podemos ver todo el cielo gris cuando está nublado.

Incluso verde con motivo de alguna aurora boreal

Imagen de Peter Essics

O de todos los colores a la vez, en un arco iris





También en Marte cambia el color del cielo y, aunque los tonos no sean los mismos, podría decirse que es al revés que en la Tierra: en pleno día tiene un tono rojizo, mientras que en los atardeceres es un azul grisáceo, como se ha visto antes.

¿Por qué esa diferencia con nuestro planeta? Porque el color del cielo en cada caso se origina por fenómenos diferentes:

En la atmósfera terrestre se produce el fenómeno de la dispersión de Rayleigh: La Luz del Sol incide en las moléculas de la atmósfera. Estas, que tienen un menor tamaño que la longitud de onda de la luz, la refleja en todas las direcciones, pero lo hace más eficientemente con el color azul, que teñirá todo el cielo. La Luz que nos viene directamente del Sol no aparece blanca como lo es en origen, sino algo amarilla, color complementario del azul que ha sido dispersado.

En los atardeceres la luz del Sol atraviesa una mayor capa de aire, que además del azul dispersará otros colores también de longitudes de onda cortas como el verde, amarillo,... y finalmente nos llega solo el rojo que queda sin dispersar, por lo cual lo veremos rojo.

En Marte la situación es diferente y se produce la llamada dispersión de Mie: debido a que habitualmente la atmósfera está llena de partículas de polvo con un tamaño mayor que la longitud de onda de la luz, estas partículas propician que el cielo adquiera un color caramelo-toffe que aparece en nuchas fotos, al dispersar más uniformemente el rojo mientras el azul lo hacen en ángulos menores.

Esquemas simplificados de los tipos de difusión de la luz en la Tierra y en Marte

Pero las cosas tampoco aquí son tan sencillas. Además de que las fotos procedentes de Marte puede que no recojan el tono exacto por un tratamiento del balance de blancos más adecuado al estudio científico que a la realidad, algunas de las sondas detectaron cielos negro azulados en momentos en que la atmósfera estaba libre de polvo.

También podría ocurrir que los astronautas que algún día lleguen a Marte vean el cielo más azulado o gris de lo que es en realidad porque al estar más lejos del Sol y llegar menos luz, sus ojos dejen de usar las células sensibles al color (los conos) y usen los bastones, que son más sensibles a la luz, lo mismo que nos ocurre en lugares con poca luz.

Un astronauta que llegara a Marte, encontraría los colores diferentes de lo que hubiera visto en fotos

Quizás haya que añadir que los colores que vemos están condicionados por la luz que llega del Sol. Nuestra estrella emite luz blanca, pero si por ejemplo fuese una gigante roja todo cambiaría: los objetos que ahora son blancos se verían igual que los rojos, y el resto de colores también serían diferentes.

En este post no he intentado ser exhaustivo ni excesivamente riguroso en un tema del que no es fácil encontrar mucha información, que en ocasiones es discordante aunque tiene su atractivo. En algunos casos he intentado sacar conclusiones a partir de datos conocidos pero sin poderlas contrastar, y si no concuerdan con las tuyas te agradecería que lo comentases.

Y si lo del color te ha sabido a poco, si te interesa conocer muchos más detalles sobre el cielo de cada planeta y su mecánica, y no has leído los artículos del blog sobre estos temas, puedes hacerlo en este enlace.



lunes, 10 de enero de 2022

Lucy y los asteroides troyanos

Continuando con el tema del post anterior que recogía la visita de un ingenio espacial a puntos de equilibrio gravitatorio, hoy es el turno de la sonda Lucy, lanzada el pasado mes de octubre y cuyo objetivo es visitar 6 asteroides (dos de ellos binarios) y 5 de los cuales son muy especiales no solo porque parecen ser de diferentes tipos y procedencia sino por su ubicación también en torno a dos puntos de equilibrio gravitatorio a causa de lo cual se les llama troyanos.

Lanzamiento de Lucy y recreación de su llegada a uno de los asteroides binarios (NASA)

Se trata de unos asteroides que se encuentran en la misma órbita de Júpiter, moviéndose casi al unísono con el quinto planeta, aproximadamente 60º por delante y por detrás de él en las cercanías de los denominados puntos de Lagrange L4 y L5, lugares de estabilidad gravitatoria de manera que un objeto o astro pequeño que se ubiqué allí, permanecerá en ese mismo lugar debido a la atracción gravitatoria conjunta del Sol y el planeta. A diferencia de los otros 3 puntos de Lagrange, de los que trata el post anterior, en este caso si por cualquier otra interacción se desplazase de ese punto, nunca se alejará demasiado y quedará en sus inmediaciones circunvalando dicho punto

Situación de los puntos de Lagrange L4 y L5, en cuyos alrededores se encuentran los asteroides troyanos.

En 1906 el astrónomo alemán Max Wolf descubrió el primero de ellos. Era el asteroide nº 588 y se movía muy lento, más que ningún otro asteroide conocido, por lo que en aquel momento era el más lejano; y cuando se calculó su órbita se comprobó que estaba a la misma distancia del Sol que Júpiter y se movía 60º por delante de él, formando los tres astros un triángulo equilátero, en el mencionado punto L4. Se le llamó Aquiles, un nombre masculino como correspondía por tradición a los asteroides de órbita extraña o fuera del cinturón principal (el primero fue el 433 al que se le había llamado Eros porque se salía del cinturón de asteroides, en ese caso por dentro)

Aunque la situación pudiera parecer sorprendente, compartiendo órbita con Júpiter, ya un siglo antes Lagrange había calculado esos puntos como lugares de estabilidad gravitatoria

El mismo año del descubrimiento de Aquiles se encontró otro asteroide que se movía también en una órbita muy similar a la de Júpiter pero 60º por detrás (en L5) al que se le llamó Patroclo, el amigo de Aquiles en la guerra de Troya.

Representación de Aquiles y Patroclo, sobre los que hay una curiosa controversia (aunque no venga a cuento) respecto a que si eran amigos o amantes. Como en la Iliada solo hay indicios de una u otra situación, no creo que tenga sentido el debate porque son personajes imaginarios.

En los años siguientes se descubrieron otros dos asteroides situados en lugares próximos a Aquiles, que fueron nombrados Héctor (del bando troyano) y Néstor (del bando griego de Aquiles y Patroclo). Actualmente se conocen muchos más y se piensa que quizás pudiera haber cerca de un millón, tantos como en el cinturón principal entre Marte y Júpiter, siendo los que preceden a Júpiter (en L4) casi el triple que los que le siguen. (En L5)

Para los mayores, a los que se les ha dado nombre propio, se han elegido personajes de la guerra de Troya, de donde les viene el nombre genérico: los que están en las proximidades de L4 se designan con nombres de personajes griegos que participaron en aquella guerra, mientras que los que están en L5 con personajes troyanos. Patroclo y Héctor nombrados previamente a establecerse este criterio suponen las únicas excepciones de infiltrados, y casualmente en el relato de la Iliada los cuerpos de ambos personajes quedaron en el bando contrario después de morir.

La entrada del caballo a Troya (G. D. Tiepolo). Los personajes de la guerra de Troya, al igual que los de muchos otros relatos de la Grecia clásica, han servido para nombrar numerosos astros.
En cuanto al origen de los asteroides troyanos de Júpiter, según unos recientes estudios sobre la densidad de Patroclo y otro asteroide satélite suyo, parece ser que no son rocosos como los del cinturón principal, sino núcleos cometarios de hielo procedentes del cinturón de Kuiper que han quedado capturados en los puntos de Lagrange, y se especula con que éste sea el origen de todos o la mayoría de los troyanos de Júpiter. Lucy ayudará a saberlo.

- La configuración troyana en los puntos L4 y L5 no es exclusiva del sistema Sol-Júpiter, y desde hace unos años se conocen otros casos, entre los que se pueden citar:

- Dos satélites de Saturno tienen troyanos: Los también satélites Calipso y Telesto giran en la órbita de Tetis en sus puntos L4 y L5, y en esos mismos puntos de la órbita de Dione se encuentran el satélite Helene y Polydeuces (o Polux)

Montaje con las imágenes de Saturno, Tetis, Calipso y Telesto

- Marte tiene varios, siendo 5261 Eureka el más destacado.

- También en la órbita de Urano se han descubierto varios troyanos: 2001 QR322,  2011 QF99,..

- También la Tierra tiene al menos un troyano: 2010 TK7  

Si curiosa es la norma utilizada en el nombramiento de los troyanos de Júpiter y las excepciones casuales de Patroclo y Héctor, no lo es menos otra circunstancia, también totalmente casual, que se da considerando los últimos descubrimientos; y es que el primer astro diferente de Júpiter al que se le descubrieron troyanos es Tetis, que en la Iliada era precisamente la madre de Aquiles, el primer troyano descubierto. Esto es también una pura casualidad ya que Tetis fue nombrado mucho antes de descubrirse Aquiles, y éste fue nombrado mucho antes de descubrirse los “troyanos” de Tetis.

Tetis entrega a su hijo Aquiles una armadura
Lo que no es casualidad es el nombre de Helene, que se refiere a la famosa Helena de Troya. Este satélite fue nombrado a proposito cuando ya se había comprobado que se trataba de un troyano (situado en L4 de Dione), y no rompe la norma de los nombres masculinos-femeninos porque se refiere solo a los asteroides. De esta manera pudo utilizarse ese personaje para nombrar un astro troyano.

Volviendo a la misión Lucy, es curioso constatar su recorrido: tras el lanzamiento volverá a aproximarse en dos ocasiones a la Tierra para ganar energía en sendas asistencias gravitatorias y se dirigirá luego hacia L4, acercándose durante el camino al asteroide del cinturón principal Donaldjohanson. Después visitará a los griegos Eurybates, Polymele, Leucus y Orus durante 2027 y 2028, volverá luego a la órbita terrestre y en 2033 se dirigirá a L5 para visitar a Patroclo

Recorrido de Lucy en su visita a  los asteroides troyanos. Las diversas posiciones de Júpiter corresponden a la situación del planeta cuando Lucy llega a cada uno de ellos.

A pesar de que los dos grupos de asteroides están separados por 120º, debido al intervalo de 5 años entre las dos visitas, Patroclo ocupará, cuando sea visitado, la misma zona en que estaban antes los otros, y en ambos viajes Lucy se dirigirá a la misma zona. Es imposible, pero si pudiera quedarse allí esperando, se ahorraría mucho camino.

 


ORBITAS TROYANAS EN FORMA DE GOTA


Aunque se dice en general que estos asteroides troyanos están en los puntos L4 y L5, lógicamente no pueden estar todos apelotonados situados exactamente en esos puntos, sino que oscilan en torno a ellos siguiendo unas trayectorias relativas en forma de gota o de lágrima como las de la siguiente figura, aunque con diversa amplitud y tamaño:

A diferencia de los puntos L1, L2 y L3 que aparecieron en el artículo anterior, L4 y L5 son estables y aunque un asteroide aparezca separado de uno de esos puntos, trazará trayectorias en torno a él, en principio sin alejarse definitivamente.

Hay que insistir en que estas trayectorias, que tienen forma de gota o de lágrima, son relativas a la posición de Júpiter parando el movimiento del planeta alrededor del Sol, y que en realidad cada asteroide troyano tiene su órbita elíptica habitual en torno al Sol, que va modificándose ligeramente por la influencia gravitatoria del planeta. Estas modificaciones van trazando la trayectoria de gota.

Las flechas azules en las dos trayectorias de gota no indican la dirección del asteroide alrededor del Sol, sino la evolución de su órbita y posición respecto a Júpiter y al punto de Lagrange.

 ¿Por qué realizan esos extraños recorridos?


Si un asteroide está en las proximidades de L4 se mueve delante de Júpiter. Si a causa de una interacción gravitatoria pasara a una órbita ligeramente exterior (posición A) o simplemente partiendo de esta posición inicial, al estar más alejado del Sol que Júpiter se moverá más despacio por lo que poco a poco se irá acercando al planeta hasta la posición B. Allí Júpiter lo atrae con lo que lo frena y le hace caer a una órbita más interior que es más rápida y por ello paradógicamente se volverá a alejar de Júpiter pasando al punto C junto a L4. Pero una vez sobrepasado L4 (donde con un ángulo de 60º habría estabilidad gravitatoria) la atracción conjunta de Júpiter y el Sol (cuya resultante está dirigida a un lugar entre el centro de masas y el Sol) le hace ir aumentando su distancia al Sol (al atraerlo lo acelera y saca hacia afuera) de manera que al pasar por D y alejarse más que la órbita de Júpiter, vuelve a moverse más lento que éste y llega nuevamente al punto A, completando la trayectoria de gota y repitiéndose el proceso que puede durar unos 150 o 200 años, según la posición de partida o el tamaño de “la gota”

De manera similar ocurre con un asteroide cercano a L5, que se encuentre por ejemplo en el punto E: se acerca por detrás a Júpiter, éste lo acelera en F haciéndolo salir a una órbita más externa que será más lenta y lo hará pasar por G y H hasta completar el recorrido en E (De G a E al recibir un impulso gravitatorio hacia un punto situado entre el Sol y el centro de masas es frenado y cae hacia dentro)

Analizada en detalle la situación es más compleja:

Estas trayectorias de gota son solo una primera aproximación sin entrar en detalle. En realidad las órbitas de los troyanos difieren de la de Júpiter, tanto en su excentricidad como en la posición de los nodos o inclinación del plano orbital. El semieje mayor (el tamaño de la órbita) ya se ha visto que va cambiando, siendo inferior al de Júpiter durante un largo periodo (de B a D pasando por C) y luego es mayor (de D a B pasando por A), todo ello si está en las cercanías de L4.

Teniendo en cuenta estas órbitas, durante los casi 12 años que tardan en completarlas, la posición respecto a Júpiter también va cambiando; y dejando al planeta en una posición fija, el asteroide trazará un bucle:

En el siguiente ejemplo un asteroide cercano a L4 estaría en el punto 1, siendo el semieje mayor del asteroide (el tamaño de su órbita)  algo más grande que el de Júpiter y por ello será algo más lento, completando su vuelta después que Júpiter:


En 1 está cerca del afelio, por fuera de la órbita joviana. De 1 a 2 va más lento y por eso en la órbita relativa se mueve hacia atrás. De 2 a 3 atraviesa la órbita de Júpiter y se vuelve más rápido que el planeta: en la representación relativa cambia de sentido y atraviesa la órbita. En los alrededores de 3 alcanza su máxima velocidad al pasar por su perihelio, mayor que la del planeta y así en la representación relativa realiza un bucle. En 4 atraviesa la órbita hacia fuera y a partir de ahí volverá a moverse más lento. En 5 Júpiter ha completado su órbita pero el asteroide no, acabando el bucle más atrás que al comienzo, más cerca de Júpiter.

Se han representado de color amarillo y azul los siguientes bucles, cada uno de ellos de casi 12 años, y son consecuencia de la excentricidad de la órbita del troyano.

Cada uno de estos bucles comienza más cerca de Júpiter, hasta que se aproximan suficientemente, Júpiter le reduce la órbita, y se vuelve más rápido que el propio planeta, volviendo a separarse.

Lógicamente en un momento el tamaño de las órbitas y por tanto el periodo serán similares.

Una vez que el asteroide se va separando de Júpiter por ir más rápido, se produce la siguiente situación, razonando de manera similar al caso anterior:


Y cuando ya se ha alejado lo suficiente vuelve a salir a una órbita más externa como se dijo, y se completa el itinerario con forma de gota, que en realidad está formada por unos cuantos bucles.


Conviene recalcar que mientras que la trayectoria de gota es debido a las interacciones gravitatorias y como consecuencia las modificaciones de las órbitas de los asteroides, las que tienen forma de lazo se deben únicamente a posiciones geométricas derivadas de la segunda ley de Kepler.