Curiosidades sobre los astros, propuestas de observaciones sencillas, aspectos cotidianos pero poco conocidos, todo ello con un enfoque didáctico.

Mostrando entradas con la etiqueta Sol. Mostrar todas las entradas
Mostrando entradas con la etiqueta Sol. Mostrar todas las entradas

viernes, 21 de marzo de 2025

Es el turno del eclipse de sol

 

El sábado día 29 de marzo por la mañana la Luna se colocará delante del Sol, tapándonos parcialmente la visión del disco solar. Es el segundo eclipse de la temporada y para quienes vivimos en la península Ibérica será el preludio de los extraordinarios eclipses de los próximos 3 años.

Como se dijo en el anterior artículo, en casi todas las temporadas de eclipses se produce uno de Sol y otro de Luna separados por 14 o 15 días, y en algunas raras ocasiones son tres eclipses.

Lo que ocurre habitualmente es que los dos eclipses no son observables desde un mismo lugar, por lo que no queda el recuerdo de ambos, pero en este caso sí: Desde toda la península Ibérica, Baleares y Canarias se pudo ver el día 14 el de luna, con el permiso de las nubes, y también se verá el día 29 el de sol. Pero desde América, por ejemplo, se vio el de Luna pero no el de Sol.

Y esta vez también, Galicia es la zona más favorecida. Si en el de Luna llegó a verse desde allí el eclipse total con la Luna a una cierta altura, en esta ocasión en que el eclipse es parcial en todos los lugares en que se ve, la magnitud en esa región es de alrededor o incluso ligeramente superior a un 0.4, mientras que en el resto está entre el 0.2 y el 0.4

Magnitud del eclipse en cada zona

Aunque un 0.4 no parezca mucho, hay que tener en cuenta que este eclipse no es total (magnitud 1 o superior) en ningún lugar del planeta.

Respecto a la "magnitud de un eclipse de sol" debo decir que no es el porcentaje de superficie de disco solar eclipsado, como a veces se interpreta, sino la fracción del diámetro solar que hace simétrica la imagen cubierta por la Luna. 

Por ejemplo una magnitud de 0,33 (1/3) que se representa en la siguiente imagen corresponde a una superficie del Sol inferior al 33% ya que de las 3 bandas la central es mayor y además la banda superior no está eclipsada completamente. En cualquier caso no difiere demasiado del porcentaje eclipsado y sirve para valorarlo.

Magnitud 1/3


Una de las diferencias entre un eclipse de Luna y uno de Sol es que los primeros son simultáneos (el que en un momento se vean en una zona y no en otra, depende solo de si la Luna eclipsada está por encima del horizonte o no, en cada lugar), pero los de Sol empiezan, acaban y tienen distinta profundidad según el lugar de observación.

Esto es lógico porque el que la Luna esté en la sombra terrestre es un hecho objetivo, pero que la sombra de la Luna incida en uno u otro lugar depende del paralaje.

Por compararlo con una situación de la vida cotidiana, si me está dando la sombra de un objeto puedo moverme a un lugar que no lo haga. Pero si veo un objeto que está en sombra, aunque yo me mueva seguiré viéndolo en sombra. En el caso de los eclipses ese objeto sería la Luna.

A continuación aparecen las imágenes del Sol eclipsado, con horas de comienzo, de final y la hora central (del máximo) en distintas ciudades, y la zona del Sol en que aparece tapado por la Luna. En principio pueden servirte para conocer aproximadamente cuáles serán en tu localidad, pero también permiten sacar algunas conclusiones:

Como en los demás casos, no se han representado los momentos exactos de comienzo y final, sino con uno o dos minutos de diferencia, para una mejor visibilidad. Por ejemplo en A Coruña en realidad empezará a las 10:45 y acabará a las 12:38








Por ejemplo viendo las horas centrales de los 3 primeros, se puede deducir hacia qué dirección geográfica se va moviendo la Luna respecto al disco solar:

Comparando una ciudad del norte (Bilbao) y una del Sur (Cádiz) se aprecia la diferente duración. Sabemos que el centro de la sombra no incide en la Tierra porque el eclipse no es total en ningún lugar, pero ¿pasará por el norte del Polo Norte como en la siguiente figura, o por el sur del Polo Sur?

Esto también lo hemos visto en el mapa; pero la trayectoria de la sombra ¿mantiene una determinada latitud, o está inclinada? ¿Hacia dónde?


La observación del eclipse

Aunque sea repetir, siempre es importante recordar los métodos para observar un eclipse de sol con seguridad. Los consejos de siempre.

- Utilizar unas gafas especiales para la observación de eclipses de sol, que protegen la vista.

- También puede observarse por proyección mediante unos prismáticos o un telescopio, o un sencillo instrumento llamado solarscope que es lo ideal para este fenómeno.

- No mirar directamente al Sol, porque además de que no distinguiremos nada, nos puede ocasionar daños en la retina

- Mucho menos observarlo directamente con prismáticos y telescopio porque en este caso los daños serán mucho mayores, incluso con la posibilidad de perder la visión. 

- Se puede ver con un telescopio provisto de un filtro adecuado o por proyección como se ha indicado antes, pero no hacerlo nunca sin la supervisión de un experto.

 

- Uno de los métodos más adecuados, sorprendentes e inocuos es utilizar el llamado “efecto pinhole”: Los huecos entre las hojas de los árboles, los agujeros de una espumadera o los que hagamos en una hoja de papel permiten proyectar montones de imágenes del Sol eclipsado:

En este eclipse no serán tan evidentes como en estas imágenes porque el porcentaje eclipsado es menor, pero algo se notará.


Hay otros métodos que antiguamente se utilizaban, y que ahora (que tenemos otros mejores), se desaconsejan:

- Mirar a través de un cristal ahumado, un filtro de soldador o ver el Sol reflejado en el agua

De todas formas, y a pesar de la sensación que los medios de comunicación suelen crear, conviene decir que mirar un instante al sol parcialmente eclipsado sin ninguna protección no es más peligroso que hacerlo cualquier otro día. Que el día del eclipse el Sol no es más perjudicial que otro día cualquiera, y que no hay que caminar por la sombra ese día, como algunos han llegado a interpretar: "Niño: cuidado que no te dé hoy el sol". Que no hay que encerrar a los niños en casa o en el aula como muchas veces se ha hecho, sino todo lo contrario: sacarlos al Sol y emplear un método seguro, aunque solo sea el efecto Pinhole. Para la mayoría la observación de un eclipse será un recuerdo extraordinario.


El último eclipse antes de la tríada.

Tal como he escrito al principio, este eclipse puede ser una referencia y un entrenamiento para los próximos 3 que se verán desde diferentes zonas de la península Ibérica en 2026, 2027 y 2028. Como ya se ha empezado a anunciar, será una circunstancia excepcional. No solamente porque desde muchos lugares se verá un eclipse total después de más de 100 años, sino porque en latitudes medias tantos eclipses tan destacados  en una misma zona no han ocurrido en muchos siglos. 

En la península Ibérica para encontrar dos eclipses totales con menos de un año de diferencia como los del 2026 y 2027 tendríamos que retroceder nada menos que 30 siglos (en 1010 AC)

Mapa tomado de elseptimocielo.fundaciondescubre.es


Geometría del eclipse

En general ¿por qué zona del Sol comienza el eclipse y por dónde acaba?

Prescindiendo de la traslación lunar empezaría por el este (por la izquierda del Sol visto desde el hemisferio norte) debido a la rotación de la Tierra:




Pero considerando la traslación lunar, y si la Tierra no rotase, empezaría el eclipse por la derecha del Sol (por el oeste desde el h. norte) y terminaría por su izquierda: 


¿Cuál de los dos movimientos prevalece?

Aunque angularmente la rotación de la Tierra es más rápida que la traslación de la Luna, la velocidad lineal de un punto de la superficie terrestre es más lenta que la de la Luna, por lo que vemos comenzar los eclipses por la zona occidental del disco solar (en el hemisferio norte por la derecha)

Los nodos en esta temporada

Volviendo a la pareja de la actual temporada de eclipses, cabe añadir que en el pasado eclipse lunar del 14-3, el momento del eclipse ocurrió poco antes de pasar la Luna por el nodo descendente de su órbita  muy cerca de él, se ha mantenido en el sur de la eclíptica y una vez que pase el nodo ascendente se producirá el eclipse solar el 29-3, según se recoge en el siguiente gráfico. Una explicación general más completa se puede ver en este enlace  



Por este motivo de estar ya la Luna por encima de la eclíptica, en este eclipse parcial pasará por el norte del Sol, ocultando una zona alta del disco solar y con una trayectoria ascendente (se puede comprobar en los gráficos de las 4 ciudades). Además solo es visible en zonas del hemisferio norte.

Esto se puede apreciar también en el mapa completo del eclipse:

Gráfico tomado de https://eclipse.gsfc.nasa.gov/ al que se le han añadido y coloreado los detalles de las distintas zonas de visibilidad

De este gráfico se puede sacar incluso más información, o ver como se reflejan algunas circunstancias.

Por ejemplo:

- Desde el polo norte y sus inmediaciones será visible todo el eclipse porque una vez comenzada la primavera allí es día perpetuo.

- Hay un punto donde el eclipse se verá en el instante de amanecer y anochecer: Cerca del polo norte se unen las 4 zonas puntiagudas del gráfico. En ese lugar el Sol casi se ocultará por el horizonte, pero en ese momento su parte superior que quede sin ocultar lo tapará la Luna, que en cuanto se retire aparecerá nuevamente el Sol porque hay día perpetuo: Roza el horizonte estando eclipsado, y aunque este eclipse es solo parcial, en ese lugar se oscurecerá como si fuese total. 
Un curioso ejemplo de mecánica celeste.


Solo queda desear que las nubes no nos impidan ver el espectáculo y podamos ir probando estrategias observacionales y didácticas para lo que nos viene en los próximos años.

domingo, 9 de marzo de 2025

Temporada de eclipses

 

El próximo viernes 14 de marzo se producirá un eclipse de Luna visible en parte desde España, y prácticamente completo desde América. 

Cerca ya de eclipsarse totalmente, con la orientación que se verá desde España con la zona superior derecha todavía brillante (dependiendo de la localidad casi justo al final de la noche)

En ese mismo instante, aunque desde América será el principio de la noche, se verá la misma imagen pero girada. 
Por ejemplo, desde Buenos Aires

¿Cuánto tiempo ha pasado desde el último eclipse? Quizás tengamos la impresión de que los eclipses ocurren de manera anárquica, sin ningún tipo de periodicidad, y bastante separados unos de otros. Y por ello quizás también te sorprenda el que 15 días más tarde, el sábado 29, podremos ver un eclipse de Sol. Por supuesto, el primero en luna llena y el segundo en nueva. O sea, que la diferencia no puede ser de 10 o de 20 días, por ejemplo.

Pues resulta que es lo habitual: dos eclipses, uno de cada tipo, separados solo por 2 semanas, aunque en algunos casos son 3 eclipses. Es lo que se llama temporada de eclipses, que tienen una amplitud de hasta casi un mes y están separadas una de otra temporada por algo menos de 6 meses. Nunca habrá un eclipse, por ejemplo, 3 o 4 meses después de otro.

Este año 2025 una estación de eclipses es esta de marzo y otra en septiembre (el día 7 de luna y el 21 de Sol) Serán dos parejas, y además los mismos tipos de eclipses: totales los de Luna y parciales los de Sol

Eclipses en el año 2025

Pero a veces tenemos la sensación de que son situaciones excepcionales porque una cosa es que ocurran y otra que ambos sean visibles desde una misma zona, como en este caso.

De hecho, desde el oeste de Europa no se han visto los dos eclipses destacados de una misma temporada (uno dos semanas después del otro) desde 1996. Sí hubo algún par de ellos, pero fueron poco llamativos: penumbrales de Luna o parciales muy breves de sol.

Además cada año ocurren al menos 4 eclipses, pero desde la península Ibérica (O desde el oeste de Europa) el último fue en 2022

Todo esto lo expliqué detalladamente en "Parejas y tríos de eclipses". Lo puedes ver allí y te lo recomiendo, pero el título de este post y las referencias al tema es porque desde entonces hasta ahora no se habían visto desde aquí ambos eclipses.

Los detalles de eclipse de Luna del día 14:

Si te interesa observarlo, el día 14 deberás madrugar de manera que puedas verlo un poco antes de las 6. En realidad la primera fase penumbral empieza antes, pero apenas se distingue nada. A las 6:10 comienza el verdadero espectáculo (un poco antes se empieza a notar) y podrás observar prácticamente hasta la salida del Sol según el lugar, de acuerdo con los datos que pongo luego. Deberás haber localizado un lugar con el horizonte oeste bajo, para poder ver la Luna el máximo tiempo posible antes de ponerse.

A diferencia de los eclipses de sol, los de luna son simultáneos en todos los lugares desde donde se vea la Luna, y esa es la circunstancia que motiva las zonas de visibilidad: Por ejemplo, si el eclipse empieza a una determinada hora, desde todos los lugares que en ese momento se vea la Luna, se apreciará el comienzo del eclipse, y por la misma zona lunar aunque esté girada.

En la mayor parte de Europa y Africa verán solo el comienzo así como desde el este de la península desde donde se verá la primera parte parcial, sin llegar a ser total, pero desde el centro y oeste además de las Islas Canarias, se verá total antes de que se ponga la Luna. O sea, la primera mitad del eclipse. y como se ha dicho, ya desde América se verá el eclipse completo.

Este es el mapa general del cual se pueden sacar algunas conclusiones:

Si lo comparamos con los mapas de otros eclipses anteriores:

Veremos que a diferencia de aquellos, en esta ocasión las líneas de separación de las diferentes fases son bastante verticales siguiendo la dirección de los meridianos. Esto es porque estamos casi en el equinoccio.

En este caso las líneas llegan hasta latitudes extremas próximas a los polos, mientras que en los otros dos ejemplos no, uniéndose por esas latitudes toda la zona donde se ve todo el eclipse o donde no se ve nada. Esto ocurre porque al haber allí día perpetuo o noche perpetua tampoco la Luna se va o no aparece durante todo el tiempo. En un eclipse lunar si hay noche perpetua nuestro satélite será visible de manera continua 

Como los eclipses de Luna son simultáneos, su visibilidad está condicionada por la posición sobre el horizonte en un momento determinado. Por ejemplo, en este caso la totalidad comienza a las 7:26 (hora oficial en España), y los lugares que a esa hora tengan la Luna sobre el horizonte la verán totalmente eclipsada. Aunque hay que decir que en la península el cielo estará ya brillante con el cercano amanecer, y no destacará mucho. 

Zona de la península desde donde llegará a verse la totalidad a las 7:26:  a la izquierda de la línea

Desde la derecha de la línea, la Luna se pondrá antes de la fase total

Tal como se aprecia en el siguiente gráfico, este eclipse ocurre cuando la Luna está cerca del nodo descendente, antes de pasar por él (se va aproximando a la eclíptica, pero acaba el eclipse antes de atravesarla -nodo descendente-), y se indican las horas del comienzo de cada etapa.

Y por lo tanto, el próximo eclipse de esta temporada (de sol, el 29 de este mes) ocurrirá cuando la Luna vuelva a atravesar la eclíptica, pero en el nodo ascendente.

viernes, 10 de mayo de 2024

El Sol ¡a tope!

No soy un experto en el tema, y por eso en los más de 400 post que lleva este blog creo que no he escrito aún nada sobre la actividad solar; pero hoy es noticia y todo el mundo está hablando de ello.

No es que haya llegado el verano y el Sol caliente más de lo habitual (que esta semana por aquí sí lo está haciendo), sino que estos días nuestra estrella tiene una actividad fuera de lo común.

En ocasiones en la superficie del Sol pueden verse manchas oscuras, y esto coincide con las épocas en que su actividad es mayor, con protuberancias y eyecciones de masa coronal, cuyos efectos pueden llegar hasta la Tierra y causar problemas en forma de tormentas geomagnéticas.

Pero aunque lo uno no implica necesariamente lo otro, sí hay una cierta relación y si se trata de ver manchas en el Sol precisamente estos días tenemos una ocasión excepcional.

El Sol, en una imagen obtenida ayer por J.M de la AAV con un SEESTAR S50

Las manchas son zonas menos calientes de la superficie del Sol, que en contraste con el resto aparecen menos brillantes.

Como he dicho, estas circunstancias no tienen nada que ver con el efecto estacional, que depende de las fechas (y su causa no está en el astro rey sino en la inclinación del eje terrestre y la posición de nuestro planeta en su órbita) sino en la propia actividad solar.

Esta actividad varía en ciclos de aproximadamente 11 años. En los mínimos de cada ciclo es posible que varios días seguidos no haya ninguna mancha, y teóricamente todavía no hemos llegado al máximo del ciclo actual, a esos intervalos en que las manchas son más frecuentes y más grandes, por lo que no deja de ser extraña, ahora, tanta actividad.

Imágenes del 27 de marzo y del 1 de abril de este año. Con pocos días de diferencia puede verse el Sol limpio o con manchas muy apreciables, como en estas imágenes obtenidas por Ana (@toro_an)
 Al final del post otras dos imágenes de Ana, mucho más sugerentes.
Puede ocurrir que las manchas no es que aparezcan o desaparezcan (a la larga sí), sino que pasan del hemisferio que nos muestra el Sol a la zona oculta, o viceversa, debido a la rotación de éste.

Lo cierto es que todos los observadores solares están sorprendidos y casi entusiasmados estos días, concretamente con una enorme mancha (en realidad un grupo de manchas) nombrada como 3664. (Resultado de la unión de la 3664 y la 3668 que en principio estaban separadas)

Magnífica imagen de la mancha 3664 obtenida ayer por Jesús Conde de la AAV, con un telescopio Macsutov 127 macskywatcher y filtro mylar

Su tamaño y apariencia se ha comparado con la que se produjo en el llamado efecto Carrington, en 1859, que ha sido la tormenta solar más potente registrada en la historia, provocando el fallo del telégrafo en toda Europa y América del norte, auroras boreales en latitudes bajas e iluminación del cielo nocturno. De haber ocurrido hoy en día habría inutilizado muchos satélites y casi toda la tecnología actual.

En Spaceweather.com , una página muy interesante y que sigue estos eventos, han comparado la mancha actual con la del efecto Carrington.

Gráfico de Spaceweather

Esta es ligeramente más grande e incluso algunos dicen que es la más grande jamás observada, aunque eso no es lo más importante.

No hay que preocuparse demasiado porque solo nos afectaría si la mancha estuviese acompañada una expulsión de gran cantidad de plasma solar y campo magnético con partículas cargadas (técnicamente una eyección de masa coronal) de gran envergadura que se dirigiera hacia nuestro planeta, y parece que no es el caso, aunque según la citada página Spaceweather.com se ha aumentado estos últimos días de nivel 2-moderada a 4-grave (en un rango de 1 a 5) a la tormenta geomagnética que nos va a llegar este mismo fin de semana. 

Aunque desde hace 20 años no se ha llegado al nivel 5, lo de ahora parece que implicaría una mayor probabilidad de auroras boreales, pero no sería peligroso para los satélites y en general para los aparatos tecnológicos.

En definitiva, todo un espectáculo que los expertos han aprovechado para obtener magníficas imágenes. Pero aunque no tengas el equipo necesario, si tienes a mano unas gafas de eclipse quizás puedas verlo directamente (no es fácil si no tienes buena vista, pero merece la pena intentarlo). Aprovecha la ocasión, aunque en cualquier caso hay que tener mucho cuidado si se observa el Sol sin la adecuada protección.

También se puede observar por proyección mediante unos prismáticos, un telescopio, un aparato especial, sencillo y barato para estas observaciones como es el Solarscope, o utilizar un filtro en la boca del telescopio.

El Solarscope y una imagen de ayer mediante el mismo. Aunque la foto del Sol no es nítida, en la observación en directo lo era mucho más.

Por proyección con telescopio y prismáticos, y con un filtro en el telescopio. Siempre es importante que el responsable cuide de que nadie mire directamente para no dañarse la vista.


Y quien disponga de un equipo apropiado para observar el Sol, apreciará muchos más detalles, no solo en las manchas sino en toda la superficie solar y su interesante granulado:

Fotos de Javier Martín de la asociación astronómica Orión, del pasado miércoles, con las manchas y una gran eyección. Telescopio H-ALPHA de 60 mm y una cámara SVBONY 305 PRO

Aunque solo sea por curiosidad y por la relevancia que tiene, es interesante seguir la evolución de esta enorme mancha y todavía hay tiempo. La rotación solar hará que llegue a ocultarse, pero teniendo en cuenta que la duración de dicha rotación es de 26 días, y aunque parezca que ya están cerca del limbo, la proyección hace que aparentemente en estas posiciones se desplacen más lentamente y se estreche la imagen.

Y se puede aprovechar también con paciencia y sensibilidad para hacer bonitas fotos, como estas  preciosas imágenes que ha obtenido Ana (@toro_an) . En su cuenta de twitter podéis encontrar más.

 

Pájaros en el Sol

Las últimas noticias sugieren que mañana sábado al principio de la noche podrían producirse excepcionales auroras boreales.

No te lamentes porque ya no tienes tiempo de preparar un viaje a las proximidades del círculo polar ártico, pero no hay problema. En estas fechas por allí ya no hay noche cerrada y no se verán. Curiosamente por latitudes intermedias, si las previsiones son correctas, hay más posibilidad.

Un aclaración: El post lo publico el viernes 10-5-2024, e intencionadamente en varias fotos no he puesto la fecha sino que me he referido a "ayer", o "el miércoles"..., con la idea de transmitir la sensación de actualidad del fenómeno.

-------------------

Actualización el 11-5

Efectivamente, parece que se han visto auroras boreales de tono rosado o morado desde muchos lugares de la península, e incluso desde Canarias, tal como se recoge hoy en los medios de manera profusa. No eran muy evidentes a simple vista, pero en las imágenes fotográficas quedaban muy claras. 

Como ejemplo, ésta que fue captada en el Maresme:



Quizás se repitan estas dos próximas noches.

lunes, 4 de diciembre de 2023

Eclipses: Parejas y tríos


Atendiendo a una petición, y aunque sea con algo de retraso, voy a tratar algunos aspectos relativos a los eclipses

Sin duda los eclipses son los fenómenos astronómicos más relevantes sobre todo de cara al gran público.

Hace un par de meses ocurrieron dos eclipses, el 14 de octubre de sol y el 28 de Luna

Alguien me dijo que parecía una casualidad, dos tan seguidos, aunque lo cierto es que siempre ocurre algo parecido. Precisamente los próximos serán el 25 de marzo, penumbral de luna, y el 8 de abril, total de sol.  Pero podrían haber sido tres.

Como en la mayoría de las relaciones humanas, los eclipses normalmente van por parejas pero de vez en cuando también aparecen los tríos. Dos de luna escoltando a uno de sol o al revés, todos ellos separados por 14 o 15 días.


Veamos las razones, empezando por el principio:

Si la órbita en que la Tierra gira alrededor del Sol (la eclíptica) y la de la Luna alrededor de la Tierra estuvieran en el mismo plano, en todas las lunas llenas y nuevas habría eclipse:

Pero entre ambos planos orbitales hay una inclinación de poco más de 5º, y los puntos en que se cortan (en los que la Luna se ve en la eclíptica) se llaman nodos. La Luna estará en el nodo ascendente (que se representa por la letra omega) cuando pasa del sur al norte de la Eclíptica, y el descendente (una omega invertida) el contrario.

Para que se produzca un eclipse la Luna debe estar cerca de uno de los nodos y así se interponga en la dirección del Sol (eclipse de Sol) o entre en la sombra de la Tierra (eclipse de Luna). Además, tal como se ha dicho, deberá ser luna llena o nueva para que los 3 astros estén alineados

Tanto en A como en B se han representado las dos posiciones de la luna en llena y nueva. En A no hay eclipse porque aunque están alineados los tres astros, la Luna no está en la eclíptica y las sombras pasan por debajo del otro astro. En B hay eclipses.

Después de un eclipse en que la sombra pase exactamente por el nodo, debido a la traslación de la Tierra, en cada lunación la línea Sol-Tierra-Luna (o Sol-Luna-Tierra) va apuntando a lugares diferentes y se va alejando del nodo (cada media lunación va retrasando el paso por el nodo) de manera que no se producirá un nuevo eclipse, aunque el nodo también se desplaza pero mucho menos:

En 1 hay eclipse de luna al coincidir la luna llena con el paso por el nodo (en este caso el ascendente). En la siguiente lunación en 2 no hay eclipse porque la Luna no está en el nodo y la sombra de la Tierra pasará por encima de ella.

Si la Luna nueva está exactamente en el nodo se producirá un eclipse total o anular de sol, y si la luna llena está en el nodo (o muy cerca de él) se producirá un eclipse total de Luna. Pero no es necesario que esté exactamente en el nodo para que ocurra un eclipse, y considerando también los parciales y penumbrales, es suficiente que la Luna (nueva o llena) esté a una distancia al nodo menor de 16.4º  en los de sol y 15.7º en los de luna, tal como se calcula en el anexo. Estos números pueden variar ligeramente según las distancias entre los 3 astros ese día, de manera que estos números son los valores medios.

Por ejemplo, el siguiente gráfico representa la situación del último eclipse de Luna, del 28 de octubre de 2023, donde la distancia de la Luna (en el momento del máximo del eclipse) al nodo es de 14.52º después de pasar por él. Al ser menor que 15.7º se produjo el eclipse, pero al no estar muy cerca del nodo fue bastante pobre.

Si la distancia de la Luna al nodo durante el eclipse hubiera sido menor, como en el siguiente caso, la parte eclipsada de la Luna lógicamente habría sido mayor.

Estas imágenes planas son la representación de una porción de la esfera celeste, por lo que la distancia del nodo al centro de la sombra de la Tierra es un ángulo y se expresa en grados, siendo prácticamente igual a la distancia del nodo a la posición de la Luna.

Como se ha dicho, la clave está en que los eclipses ocurren necesariamente en luna nueva o llena, y cerca de los nodos de la órbita lunar, con los márgenes indicados antes. Tal como se representa en el siguiente gráfico, si ocurre un eclipse antes del nodo (por ejemplo de Sol y luna nueva en la posición 1) al cabo de media lunación ocurrirá otro (en luna llena -2-) después de pasar la Luna por el otro nodo.

Debido a que la Tierra se ha desplazado en esas 2 semanas en su movimiento de traslación, la posición relativa respecto al nodo de la luna llena o nueva no será la misma y en la mayoría de los casos en la siguiente ocasión ya se habrá alejado y no habrá eclipse. Como se verá luego, también influye en menor medida el ligero desplazamiento de los nodos.

Pero en ocasiones hay margen para que ocurran 3 eclipses también separados por 2 semanas del primero al segundo y del segundo al tercero: de Luna-Sol-Luna como en el siguiente gráfico, o de Sol-Luna-Sol.

En este caso el primero (1) ocurrirá con la Luna relativamente alejada del nodo, aunque dentro del margen indicado, el segundo (2) muy cerca del nodo con lo que será un eclipse muy bueno, y el tercero (3) con la Luna alejada también del nodo.

Esta situación, vista desde la Tierra, se representa en el siguiente gráfico, donde se ha desplegado toda la línea de la eclíptica en una recta:

Se ha situado el primer eclipse (a la derecha) justo en el borde del margen para ver la situación más favorable para que ocurran más eclipses. Aún así, y aunque se producen 3 eclipses, el tercero está casi en el otro borde, por lo que es extremadamente difícil que en las situaciones medias, ocurran 3 seguidos: A poco que el 1 se acerque al nodo, el 3 se saldría del margen.

Para mayor detalle repito el mismo gráfico con más parámetros que, aunque puedan hacerlo más engorroso, justifican mejor el resultado. 


Al igual que en el gráfico anterior y el siguiente, todo está a escala

Por tanto, cabe justo justo un trío comenzando y acabando con eclipses penumbrales mínimos (en el borde de los márgenes), pero sería mucha casualidad.

Una pareja siempre entrará, porque el primer eclipse (1) siempre estará en el margen previo al nodo (antes de él, porque si estuviera después del nodo habría ocurrido otro eclipse antes), con lo que media lunación después (en 2) también habrá eclipse porque estará también en la zona dentro del margen del siguiente nodo, pero si el primer eclipse no ocurre al principio del margen como antes, en 3 ya se saldrá y no habrá más, como se aprecia en este otro gráfico:

En este caso se producen solo dos eclipses seguidos, que es lo más habitual.

Todo esto se obtiene redondeando y utilizando valores medios de los parámetros, pero que varían ligeramente según las posiciones de la Tierra y la Luna en sus órbitas. En el anexo se calculan los diferentes parámetros y se recogen en los gráficos.

 

¿Hay muchos tríos?

Tal como puede deducirse de la anterior explicación y los gráficos, no son muchos.

Concretamente entre 1950 y 2050 ocurren 22 tríos frente a 184 parejas. Los tríos son 10 de Sol-Luna-Sol y 12 de Luna-Sol-Luna. 

El último fue en 2020 y el próximo será en 2029, ambos en junio y julio. De todas formas no hay que decir la frase de "¡Todavía faltan más de 5 años!" porque una pareja es más interesante que un trío, ya que los de los extremos de éste son eclipses muy pequeños (los de sol solo parciales y visibles desde latitudes muy altas, y los de luna solo penumbrales) 

Por ejemplo, desde la mayor parte de la península Ibérica se verá un extraordinario eclipse de sol total y un eclipse de luna casi total en agosto de 2026. ¡Ya queda menos!

Es muy curioso constatar que todos los tríos de este periodo ocurren en la misma época del año:

De los 22 citados, 9 fueron en junio-julio, 7 en julio-agosto, 3 en agosto-septiembre y 2 en mayo-junio y 1 en abril-mayo

Claramente prevalece las cercanías a julio y en esos 100 años no ocurre nunca en invierno ni en otoño.

Esto es porque en el afelio (principios de julio) la Tierra se mueve más despacio y por ello la lunación es más corta (como se explica en el anexo de este artículo). Con ello se acortarían los intervalos entre las lunas nuevas y llenas, y como se deduce de los gráficos anteriores entrarían más fácilmente dentro de los márgenes. En los meses próximos a enero ocurre lo contrario: al pasar la Tierra por el perihelio las lunaciones son más largas, la distancia entre la posición 1 y 3 de los gráficos anteriores será más grande y será difícil (aunque no imposible) que ambas queden incluidas en los márgenes con lo que normalmente no habrá tríos.



En este anexo aparece mucha geometría y trigonometría, para deducir el tamaño de los márgenes de los eclipses. Si no te gustan esas cosas, te aconsejo que no lo mires.

Vamos a obtener los diferentes parámetros numéricos que se han utilizado en la explicación, concretamente los márgenes en torno al nodo, dentro de los cuales se producen los eclipses. 

- En los eclipses penumbrales de Luna: (su margen será el máximo incluyendo todos los tipos de eclipses lunares)

a) Cálculo previo. Gráfico en alzado, con la eclíptica de perfil.

Como el cono de penumbra está determinado por las rectas que tocan el Sol y la Tierra cruzándose entre los dos astros, se calcula primero la distancia del borde del cono, a la Tierra (Y). Se utilizan como datos la distancia media del Sol a la Tierra y el radio de los dos astros, utilizando triángulos semejantes.

  

b) Se calcula la distancia máxima de la Luna al eje del cono de la sombra para que se produzca un eclipse penumbral (Z), y luego el ángulo desde la Tierra del eje del cono al centro de la Luna Se traza desde el centro de la Tierra porque el gráfico no está a escala y el tamaño a escala de nuestro planeta sería mínimo. (z)

c) El siguiente gráfico está en un plano perpendicular al anterior, delante de él. Está en alzado, con la eclíptica horizontal. Se calcula la separación máxima u de la Luna respecto al nodo, se le llama n al valor obtenido de alfa, y está a escala.

 

- En los eclipses de Sol

Tal como se representa en el siguiente gráfico, en principio para que haya eclipse la distancia angular entre el centro del Sol y el de la Luna debería ser menor de 0.5º porque cada uno de ellos tiene un radio aparente de 0.25º. Pero desde cada lugar de la Tierra se ve la Luna en diferente posición por el paralaje, y los eclipses de Sol no se ven igual desde diferentes lugares. Desde una posición media la Luna puede verse a 0.95º desde un extremo, tal como se calcula.

Así al sumar 0.95º + 0.5º queda 1.45º a los que estaría la Luna separada del Sol como máximo para que se produzca el eclipse.


Si buscas estos datos en internet, es probable que encuentres valores diferentes. Eso es porque aquí se han tomado valores medios y en el caso de los eclipses de luna en ocasiones se no se consideran los penumbrales.

Eclipse parcial.

a) Si queremos obtener el margen para un eclipse parcial, habrá que empezar calculando la longitud del cono de sombra de la Tierra (Z), que en promedio, será:

b) Distancia máxima de la Luna al eje del cono de la sombra para que se produzca un eclipse parcial (La Luna tocará el cono de sombra, o mejor dicho lo intersectará muy levemente)

c) Ángulo desde la Tierra del eje del cono al centro de la Luna. Se traza desde el centro de la Tierra porque el gráfico no está a escala y el tamaño a escala de nuestro planeta sería mínimo. Se toma el centro de la Luna porque es la referencia que se utiliza para determinar su situación:

d) Finalmente en un triángulo esférico situado en un plano perpendicular a los anteriores se calcula el margen N:

10.5º es el margen medio para un eclipse parcial. Si queremos calcular el margen máximo, que es lo que suele aparecer, el cálculo será igual pero con la Tierra en el afelio  (distancia al Sol 152100000 km) y la Luna en el perigeo (a una distancia de 356600 k)
 
Margen máximo de un eclipse parcial

Se obtiene exactamente igual que en el cálculo anterior pero tomando la posición de la Tierra en el afelio (Distancia Tierra-Sol= 152000000 km) y la Luna en el perigeo (Distancia Tierra-Luna = 356595):

Este es el valor que se suele encontrar: "Un eclipse lunar solo puede ocurrir cuando la luna está  a menos de 11.4º de uno de los nodos" 
Pero cuidado, que esta condición es necesaria pero no suficiente.

Eclipse total de Luna

 Los cálculos serían igual que los anteriores, pero en el apartado c) en vez de sumar el radio lunar (0.25º) habría que restarlo porque toda la Luna debe quedar dentro del cono de sombra.